Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)$ be a linear function such that $f(0)=-5$ and $f(f(0))=-15$. The number of values of $m$ for which the solutions of the inequality $f(x) f(m-x) \geq 0$ form an interval of length 2 , is.

JEE AdvancedJEE Advanced 2019

Solution:

Let $f(x)=a x+b$
$f(0)=-5 \Rightarrow b=-5$
$f(f(0))=-15 \Rightarrow a=2$
$\therefore \mathrm{f}(\mathrm{x})=2 \mathrm{x}-5$
Now $f(x) \cdot f(m-x) \geq 0$
$\therefore\left(\mathrm{x}-\frac{5}{2}\right)\left(\mathrm{x}-\left(\mathrm{m}-\frac{5}{2}\right)\right) \leqslant 0$
Case I $\frac{5}{2}>m-\frac{5}{2}$, here length of interval
$=\frac{5}{2}-\mathrm{m}+\frac{5}{2}=2 \Rightarrow \mathrm{m}=3$
Case II $\frac{5}{2}<\mathrm{m}-\frac{5}{2}$, here length of interval
$ =m-\frac{5}{2}-\frac{5}{2}=2$
$ \Rightarrow m=7$
$\therefore$ two values of $\mathrm{m}$