Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f ( x ) be a function such that f '( x )= log 1 / 3[ log 3( sin x + a )]. If f ( x ) is decreasing for all real values of x, then
Q. Let
f
(
x
)
be a function such that
f
′
(
x
)
=
lo
g
1/3
[
lo
g
3
(
sin
x
+
a
)
]
. If
f
(
x
)
is decreasing for all real values of
x
, then
1215
200
Application of Derivatives
Report Error
A
a
∈
(
1
,
4
)
B
a
∈
(
4
,
∞
)
C
a
∈
(
2
,
3
)
D
a
∈
(
2
,
∞
)
Solution:
We must have
lo
g
1/3
(
lo
g
3
(
sin
x
+
a
)
)
<
0∀
x
∈
R
⇒
lo
g
3
(
sin
x
+
a
)
>
1∀
x
∈
R
⇒
sin
x
+
a
>
3∀
x
∈
R
⇒
a
>
3
−
sin
x
∀
x
∈
R
⇒
a
>
4