Thank you for reporting, we will resolve it shortly
Q.
Let $f ( x )$ be a function such that $f '( x )=\log _{1 / 3}\left[\log _{3}(\sin x + a )\right]$. If $f ( x )$ is decreasing for all real values of $x$, then
Application of Derivatives
Solution:
We must have $\log _{1 / 3}\left(\log _{3}(\sin x+a)\right)<0 \forall x \in R$
$\Rightarrow \log _{3}(\sin x+a)>1 \forall x \in R$
$\Rightarrow \sin x+a>3 \forall x \in R$
$\Rightarrow a>3-\sin x \forall x \in R $
$\Rightarrow a>4$