Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a differentiable function on x∈ R such that f(x + y)=f(x)⋅ f(y) for all x,y . If f(0)≠ 0, f(5)=12 and f' (0) = 16 , then f' (5) is equal to
Q. Let
f
(
x
)
be a differentiable function on
x
∈
R
such that
f
(
x
+
y
)
=
f
(
x
)
⋅
f
(
y
)
for all
x
,
y
. If
f
(
0
)
=
0
,
f
(
5
)
=
12
and
f
′
(
0
)
=
16
, then
f
′
(
5
)
is equal to
1530
196
NTA Abhyas
NTA Abhyas 2020
Report Error
A
190
B
186
C
196
D
192
Solution:
f
′
(
5
)
=
h
→
0
lim
h
f
(
5
+
h
)
−
f
(
5
)
=
h
→
0
l
im
h
f
(
5
+
h
)
−
f
(
5
+
0
)
=
h
→
0
l
im
h
f
(
5
)
⋅
f
(
h
)
−
f
(
5
)
⋅
f
(
0
)
[
∵
f
(
x
+
y
)
=
f
(
x
)
.
f
(
y
)
f
or
a
ll
x
,
y
]
=
(
h
→
0
l
im
h
f
(
h
)
−
f
(
0
)
)
⋅
f
(
5
)
f
′
(
0
)
×
f
(
5
)
=
16
×
12
=
192