Q. Let $f\left(x\right)$ be a differentiable function on $x\in R$ such that $f\left(x + y\right)=f\left(x\right)\cdot f\left(y\right)$ for all $x,y$ . If $f\left(0\right)\neq 0, \, f\left(5\right)=12$ and $f^{'} \left(0\right) = 16$ , then $f^{'} \left(5\right)$ is equal to
NTA AbhyasNTA Abhyas 2020
Solution: