Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a cubic polynomial on R which increases in the interval (-∞, 0) ∪(1, ∞) and decreases in the interval (0,1). If f prime(2)=6 and f(2)=2, then the value of tan -1( f (1))+ tan -1( f ((3/2)))+ tan -1( f (0)) cquals
Q. Let
f
(
x
)
be a cubic polynomial on
R
which increases in the interval
(
−
∞
,
0
)
∪
(
1
,
∞
)
and decreases in the interval
(
0
,
1
)
. If
f
′
(
2
)
=
6
and
f
(
2
)
=
2
, then the value of
tan
−
1
(
f
(
1
))
+
tan
−
1
(
f
(
2
3
)
)
+
tan
−
1
(
f
(
0
))
cquals
1315
166
Application of Derivatives
Report Error
A
tan
−
1
2
B
cot
−
1
2
C
−
tan
−
1
2
D
−
cot
−
1
2
Solution:
f
′
(
x
)
=
k
x
(
x
−
1
)
f
′
(
2
)
=
2
k
=
6
∴
k
=
3
∴
f
′
(
x
)
=
3
x
2
−
3
x
⇒
f
(
x
)
=
x
3
−
2
3
x
2
+
C
f
(
2
)
=
8
−
6
+
C
=
2
+
C
=
2
∴
C
=
0
⇒
f
(
x
)
=
x
2
(
x
−
2
3
)
.