Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x ) = ax (a > 0) be written as f( x) = f1(x ) + f2(x) , where f1( x), is an even function of f2(x) is an odd function. Then f1(x + y) + f1(x - y) equals
Q. Let
f
(
x
)
=
a
x
(
a
>
0
)
be written as
f
(
x
)
=
f
1
(
x
)
+
f
2
(
x
)
,
where
f
1
(
x
)
,
is an even function of
f
2
(
x
)
is an odd function. Then
f
1
(
x
+
y
)
+
f
1
(
x
−
y
)
equals
3909
214
JEE Main
JEE Main 2019
Relations and Functions
Report Error
A
2
f
1
(
x
)
f
1
(
y
)
35%
B
2
f
1
(
x
)
f
2
(
y
)
25%
C
2
f
1
(
x
+
y
)
f
2
(
x
−
y
)
25%
D
2
f
1
(
x
+
y
)
f
1
(
x
−
y
)
14%
Solution:
f
(
x
)
=
a
x
,
a
>
0
f
(
x
)
=
2
a
x
+
a
−
x
+
a
x
−
a
−
x
⇒
f
1
(
x
)
=
2
a
x
+
a
−
x
f
2
(
x
)
=
2
a
x
−
a
−
x
⇒
f
1
(
x
+
y
)
+
f
1
(
x
−
y
)
=
2
a
x
+
y
+
a
−
x
−
y
+
2
a
x
−
y
+
a
−
x
+
y
=
2
(
a
x
+
a
−
x
)
(
a
y
+
a
−
y
)
=
f
1
(
x
)
×
2
f
1
(
y
)
=
2
f
1
(
x
)
f
1
(
y
)