Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x ) = ax (a > 0) be written as f( x) = f1(x ) + f2(x) , where f1( x), is an even function of f2(x) is an odd function. Then f1(x + y) + f1(x - y) equals
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $f(x ) = a^x (a > 0)$ be written as $f( x) = f_1(x ) + f_2(x) , $ where $f_1( x),$ is an even function of $f_2(x)$ is an odd function. Then $f_1(x + y) + f_1(x - y)$ equals
JEE Main
JEE Main 2019
Relations and Functions
A
$2 f_1 (x) f_1 (y)$
35%
B
$2 f_1 (x) f_2 (y)$
25%
C
$2 f_1 (x + y) f_2 (x - y )$
25%
D
$2 f_1 (x + y) f_1 (x - y )$
14%
Solution:
$f\left(x\right) =a^{x}, a >0 $
$ f\left(x\right) = \frac{a^{x} +a^{-x}+a^{x} -a^{-x}}{2} $
$ \Rightarrow f_{1} \left(x\right)=\frac{a^{x}+a^{-x}}{2} $
$f_{2}\left(x\right)= \frac{a^{x}-a^{-x}}{2} $
$\Rightarrow f_{1}\left(x+y\right) + f_{1}\left(x-y\right) $
$ = \frac{a^{x+y}+ a^{-x-y}}{2} + \frac{a^{x-y}+a^{-x+y}}{2} $
$ = \frac{\left(a^{x}+a^{-x}\right)}{2} \left(a^{y} +a^{-y}\right) $
$=f_{1}\left(x\right) \times2f_{1}\left(y\right) $
$= 2f_{1}\left(x\right)f_{1}\left(y\right) $