Q.
Let f(x)=⎩⎨⎧−2sinxAsinx+Bcosif x≤−2πif −2π<x<2πif x≤2π
For what values of A and B, the function f(x) is continuous throughout the real line ?
Given, f(x)=⎩⎨⎧−2sinX, if x≤−2πAsinx+B, if −2π<x<2πcosx, if x≥2π...(i)
From above conditions function f(x) is continuous throughout the real line, when function f(x) is continuous at x=−2π and 2π.
For continuity at x=−2π x→−2π−limf(x)=x→−2π+limf(x)=f(−2π)...(ii) x→−2π−limf(x)=2 x→−2π+limf(x)=−A+B f(−2π)=2 ∴ From Eq. (ii), we get −A+B=2...(iii)
For continuity at x=2π x→2πlimf(x)=x→2π+limf(x)=f(2π)...(iv)
Here, x→2π−limf(x)=A+B ⇒x→2π+limf(x)=0
And f(2π)=0 ∴ From Eq. (iv) A+B=0...(v) ∴ From Eqs. (iii) and (v) A=−1,B=1