Q.
Let $f(x) =
\begin{cases}
- 2 \sin x & \quad \text{if } x \leq - \frac{\pi}{2}\\
A \ \sin x + B & \quad \text{if } - \frac{\pi}{2} < x < \frac{\pi}{2} \\
\cos & \quad \text{if } x \leq \frac{\pi}{2}
\end{cases} $
For what values of A and B, the function $f (x)$ is continuous throughout the real line ?
UPSEEUPSEE 2017
Solution: