Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= | 1+ sin 2 x cos 2 x sin 2 x sin 2 x 1+ cos 2 x sin 2 x sin 2 x cos 2 x 1+ sin 2 x|, x ∈[(π/6), (π/3)] . If α and β respectively are the maximum and the minimum values of f, then
Q. Let
f
(
x
)
=
∣
∣
1
+
sin
2
x
sin
2
x
sin
2
x
cos
2
x
1
+
cos
2
x
cos
2
x
sin
2
x
sin
2
x
1
+
sin
2
x
∣
∣
,
x
∈
[
6
π
,
3
π
]
.
If
α
and
β
respectively are the maximum and the minimum values of
f
, then
1818
115
JEE Main
JEE Main 2023
Determinants
Report Error
A
β
2
+
2
α
=
4
19
B
α
2
+
β
2
=
2
9
C
α
2
−
β
2
=
4
3
D
β
2
−
2
α
=
4
19
Solution:
C
1
→
C
1
+
C
2
+
C
3
f
(
x
)
=
∣
∣
2
+
sin
2
x
2
+
sin
2
x
2
+
sin
2
x
cos
2
x
1
+
cos
2
x
cos
2
x
sin
2
x
sin
2
x
1
+
sin
2
x
∣
∣
f
(
x
)
=
(
2
+
sin
2
x
)
∣
∣
1
1
1
cos
2
x
1
+
cos
2
x
cos
2
x
sin
2
x
sin
2
x
1
+
sin
2
x
∣
∣
R
2
→
R
2
−
R
1
R
3
→
R
3
−
R
1
f
(
x
)
=
2
+
sin
2
x
)
∣
∣
1
0
0
cos
2
x
1
0
sin
2
x
0
1
∣
∣
=
(
2
+
sin
2
x
)
(
1
)
=
2
+
sin
2
x
=
sin
2
x
∈
[
2
3
,
1
]
Hence
2
+
sin
2
x
∈
[
2
+
2
3
,
3
]