Q. Let $f(x)= \begin{vmatrix} 1+\sin ^2 x & \cos ^2 x & \sin 2 x \\ \sin ^2 x & 1+\cos ^2 x & \sin 2 x \\ \sin ^2 x & \cos ^2 x & 1+\sin 2 x\end{vmatrix}, x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right] . $ If $\alpha$ and $\beta$ respectively are the maximum and the minimum values of $f$, then
Solution: