Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(θ)=3( sin 4((3 π/2)-θ)+ sin 4(3 π+θ))-2(1- sin 2 2 θ) and S= θ ∈[0, π]: f prime(θ)=-(√3/2) . If 4 β= displaystyle∑θ ∈ S θ, then f(β) is equal to
Q. Let
f
(
θ
)
=
3
(
sin
4
(
2
3
Ï€
​
−
θ
)
+
sin
4
(
3
Ï€
+
θ
)
)
−
2
(
1
−
sin
2
2
θ
)
and
S
=
{
θ
∈
[
0
,
Ï€
]
:
f
′
(
θ
)
=
−
2
3
​
​
}
. If
4
β
=
θ
∈
S
∑
​
θ
, then
f
(
β
)
is equal to
1579
166
JEE Main
JEE Main 2023
Continuity and Differentiability
Report Error
A
8
11
​
B
2
3
​
C
8
9
​
D
4
5
​
Solution:
f
(
θ
)
=
3
(
sin
4
(
2
3
Ï€
​
−
θ
)
+
sin
4
(
3
x
+
θ
)
)
−
2
(
1
−
sin
2
2
θ
)
S
=
{
θ
∈
[
0
,
Ï€
]
:
f
′
(
θ
)
=
−
2
3
​
​
}
⇒
f
(
θ
)
=
3
(
cos
4
θ
+
sin
4
θ
)
−
2
cos
2
2
θ
⇒
f
(
θ
)
=
3
(
1
−
2
1
​
sin
2
2
θ
)
−
2
cos
2
2
θ
⇒
f
(
θ
)
=
3
−
2
3
​
sin
2
2
θ
−
2
cos
2
θ
=
2
3
​
−
2
1
​
cos
2
2
θ
=
2
3
​
−
2
1
​
(
2
1
+
c
o
s
4
θ
​
)
f
(
θ
)
=
4
5
​
−
4
c
o
s
4
θ
​
f
′
(
θ
)
=
sin
4
θ
⇒
f
′
(
θ
)
=
sin
4
θ
=
−
2
3
​
​
⇒
4
θ
=
nπ
+
(
−
1
)
n
3
Ï€
​
⇒
θ
=
4
nπ
​
+
(
−
1
)
n
12
Ï€
​
⇒
θ
=
12
Ï€
​
,
(
4
Ï€
​
−
12
Ï€
​
)
,
(
2
Ï€
​
+
12
Ï€
​
)
,
(
4
3
Ï€
​
−
12
Ï€
​
)
⇒
4
β
=
4
Ï€
​
+
2
Ï€
​
+
4
3
Ï€
​
=
2
3
Ï€
​
⇒
β
=
8
3
Ï€
​
⇒
f
(
β
)
=
4
5
​
−
4
c
o
s
2
3
Ï€
​
​
=
4
5
​