Q. Let $f(\theta)=3\left(\sin ^4\left(\frac{3 \pi}{2}-\theta\right)+\sin ^4(3 \pi+\theta)\right)-2\left(1-\sin ^2 2 \theta\right)$ and $S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\}$. If $4 \beta=\displaystyle\sum_{\theta \in S} \theta$, then $f(\beta)$ is equal to
Solution: