Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be defined as f ( x )= e - x sin x. If F :[ 0 , 1] arrow R is a differentiable function such that F ( x )=∫ limits0 x f ( t ) dt, then the value of ∫ limits01( F prime( x )+ f ( x )) e x dx lies in the interval
Q. Let
f
:
R
→
R
be defined as
f
(
x
)
=
e
−
x
sin
x
. If
F
:
[
0
,
1
]
→
R
is a differentiable function such that
F
(
x
)
=
0
∫
x
f
(
t
)
d
t
, then the value of
0
∫
1
(
F
′
(
x
)
+
f
(
x
)
)
e
x
d
x
lies in the interval
2139
229
JEE Main
JEE Main 2021
Integrals
Report Error
A
[
360
327
,
360
329
]
43%
B
[
360
330
,
360
331
]
57%
C
[
360
331
,
360
334
]
0%
D
[
360
335
,
360
336
]
0%
Solution:
f
(
x
)
=
e
−
x
sin
x
Now,
F
(
x
)
=
0
∫
x
f
(
t
)
d
t
⇒
F
′
(
x
)
=
f
(
x
)
I
=
0
∫
1
(
F
′
(
x
)
+
f
(
x
)
)
e
x
d
x
=
0
∫
1
(
f
(
x
)
+
f
(
x
))
⋅
e
x
d
x
=
2
0
∫
1
f
(
x
)
⋅
e
x
d
x
=
2
0
∫
1
e
−
x
sin
x
⋅
e
x
d
x
=
2
0
∫
1
sin
dd
x
=
2
(
1
−
cos
1
)
I
=
2
{
1
−
(
1
−
2
1
+
4
1
+
16
1
+
8
1
………
.
)
}
I
=
1
−
4
2
+
16
2
−
19
2
+
…
..
1
−
4
2
<
I
<
1
−
4
2
+
16
2
12
11
<
I
<
360
331
⇒
I
∈
[
12
11
,
360
331
]
⇒
I
∈
[
360
330
,
360
331
]