Q. Let $f : R \rightarrow R$ be defined as $f ( x )= e ^{- x } \sin x$. If $F :[ 0 , 1] \rightarrow R$ is a differentiable function such that $F ( x )=\int\limits_{0}^{ x } f ( t ) dt$, then the value of $\int\limits_{0}^{1}\left( F ^{\prime}( x )+ f ( x )\right) e ^{ x } dx$ lies in the interval
Solution: