f(x) is continuous on R ⇒f(1−)=f(1)=f(1+) ∣a+1+b∣=x→1limsin(πx) ∣a+1+b∣=0⇒a+b=−1…(1) ⇒ Also f(−1−)=f(−1)=f(−1+) x→−1lim2sin(2−πx)=∣a−1+b∣ ∣a−1+b∣=2
Either a−1+b=2 or a−1+b=−2 a+b=3…(2) or a+b=−1… (3)
from (1) and (2) ⇒a+b=3=−1( reject )
from (1) and (3) ⇒a+b=−1