Q.
Let $f: R \rightarrow R$ be defined as
$f(x) =
\begin{cases}
2 sin \left(- \frac{\pi x}{2}\right) & \text{if } x < 1 \\
|ax^{2} + x + b| & \text{if } -1 \le x \le 1 \\
sin (\pi x) & \text{if } x > 1
\end{cases} $
If $f(x)$ is continuous on $R,$ then $a+b$ equals:
Solution: