Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be continuous function satisfying f ( x )+ f ( x + k )= n, for all x ∈ R where k >0 and n is a positive integer. If I 1=∫ limits04 nk f ( x ) dx and I2=∫ limits-k3 k f(x) d x, then
Q. Let
f
:
R
→
R
be continuous function satisfying
f
(
x
)
+
f
(
x
+
k
)
=
n
, for all
x
∈
R
where
k
>
0
and
n
is a positive integer. If
I
1
=
0
∫
4
nk
f
(
x
)
d
x
and
I
2
=
−
k
∫
3
k
f
(
x
)
d
x
, then
1657
148
JEE Main
JEE Main 2022
Integrals
Report Error
A
I
1
+
2
I
2
=
4
nk
B
I
1
+
2
I
2
=
2
nk
C
I
1
+
n
I
2
=
4
n
2
k
D
I
1
+
n
I
2
=
6
n
2
k
Solution:
f
(
x
)
+
f
(
x
+
k
)
=
n
⇒
f
(
x
)
=
f
(
x
+
2
k
)
f
(
x
)
is periodic with period
2
k
I
1
=
0
∫
4
nk
f
(
x
)
d
x
=
2
n
0
∫
2
k
f
(
x
)
d
x
I
2
=
−
k
∫
3
k
f
(
x
)
d
x
=
2
∫
0
2
k
f
(
x
)
d
x
Now,
f
(
x
)
+
f
(
x
+
k
)
=
n
⇒
0
∫
k
f
(
x
)
d
x
+
0
∫
k
f
(
x
+
k
)
d
x
=
nk
⇒
0
∫
k
f
(
x
)
d
x
+
k
∫
2
k
f
(
x
)
d
x
=
nk
⇒
0
∫
2
k
f
(
x
)
d
x
=
nk
⇒
I
1
=
2
n
2
k
,
I
2
=
2
nk
⇒
I
1
+
n
I
2
=
4
n
2
k