Q. Let $f : R \rightarrow R$ be continuous function satisfying $f ( x )+ f ( x + k )= n$, for all $x \in R$ where $k >0$ and $n$ is a positive integer. If $I _{1}=\int\limits_{0}^{4 nk } f ( x ) dx$ and $I_{2}=\int\limits_{-k}^{3 k} f(x) d x$, then
Solution: