Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R be a differentiable function such that f ((π/4))=√2, f ((π/2))=0 and f prime((π/2))=1 and let g(x)=∫ limitsxπ / 4(f prime(t) sec t+ tan t sec t f(t)) d t for x ∈[(π/4), (π/2)). Then displaystyle lim x arrow((π/2))- g(x) is equal to
Q. Let
f
:
R
→
R
be a differentiable function such that
f
(
4
π
)
=
2
,
f
(
2
π
)
=
0
and
f
′
(
2
π
)
=
1
and let
g
(
x
)
=
x
∫
π
/4
(
f
′
(
t
)
sec
t
+
tan
t
sec
t
f
(
t
)
)
d
t
for
x
∈
[
4
π
,
2
π
)
. Then
x
→
(
2
π
)
−
lim
g
(
x
)
is equal to
2037
151
JEE Main
JEE Main 2022
Integrals
Report Error
A
2
B
3
C
4
D
-3
Solution:
g
(
x
)
=
x
∫
π
/4
(
f
′
(
t
)
sec
t
+
tan
t
sec
t
f
(
t
)
)
d
t
g
(
x
)
=
x
∫
π
/4
d
(
f
(
t
)
⋅
sec
t
)
=
f
(
t
)
sec
t
∣
x
π
/4
g
(
x
)
=
f
(
4
π
)
sec
4
π
−
f
(
x
)
⋅
sec
x
g
(
x
)
=
2
−
f
(
x
)
sec
x
=
2
−
(
c
o
s
x
f
(
x
)
)
x
→
(
2
π
)
−
lim
g
(
x
)
=
2
−
x
→
(
2
π
)
−
lim
(
cos
x
f
(
x
)
)
Using L'Hopital Rule
=
2
−
x
→
(
2
π
)
−
lim
(
−
sin
x
)
f
′
(
x
)
=
2
+
s
i
n
2
π
f
′
(
2
π
)
=
2
+
1
1
=
3