Q. Let $f : R \rightarrow R$ be a differentiable function such that $f \left(\frac{\pi}{4}\right)=\sqrt{2}, f \left(\frac{\pi}{2}\right)=0$ and $f ^{\prime}\left(\frac{\pi}{2}\right)=1$ and let $g(x)=\int\limits_{x}^{\pi / 4}\left(f^{\prime}(t) \sec t+\tan t \sec t f(t)\right) d t$ for $x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then $\displaystyle\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} g(x)$ is equal to
Solution: