Q.
Let f:R+→R be a derivable function satisfying 1∫xyf(t)dt=y1∫xf(t)dt+x1∫yf(t)dt∀x,y>0, if f(1)=3, then number of integral values of k for which f(x)=kx has exactly 2 solutions.
Differentiate w.r.t. y keeping x constant xf(x,y)=1∫xf(t)dt+xf(y) Put y=1 xf(x)=∫1xf(t)dt+3x xf′(x)+f(x)=f(x)+3 f′(x)=x3 f′(x)=3lnx+C f′(1)=3⇒c=3⇒f(x)=3ln(ex) f′(x)=x3=xy⇒y=3 ∴ Slope of tangent to y=ln(ex) from origin =13 ∴ If y=kx is to intersect y=3ln ex in two distinct points k∈(0,3) ∴ Number of integral values of k=2.