Q. Let $f: R^{+} \rightarrow R$ be a derivable function satisfying $\int \limits_1^{x y} f(t) d t=y \int \limits_1^x f(t) d t+x \int \limits_1^y f(t) d t \forall x, y>0$, if $f (1)=3$, then number of integral values of $k$ for which $f ( x )= kx$ has exactly 2 solutions.
Application of Derivatives
Solution: