Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow R and g: R arrow R be two functions defined by f ( x )= log e ( x 2+1)- e - x +1 and g(x)=(1-2 e2 x/ex). Then, for which of the following range of α, the inequality f ( g (((α-1)2/3)))> f ( g (α-(5/3))) holds?
Q. Let
f
:
R
→
R
and
g
:
R
→
R
be two functions defined by
f
(
x
)
=
lo
g
e
(
x
2
+
1
)
−
e
−
x
+
1
and
g
(
x
)
=
e
x
1
−
2
e
2
x
. Then, for which of the following range of
α
, the inequality
f
(
g
(
3
(
α
−
1
)
2
)
)
>
f
(
g
(
α
−
3
5
)
)
holds?
903
161
JEE Main
JEE Main 2022
Application of Derivatives
Report Error
A
(
2
,
3
)
100%
B
(
−
2
,
−
1
)
0%
C
(
1
,
2
)
0%
D
(
−
1
,
1
)
0%
Solution:
f
(
x
)
=
lo
g
e
(
x
2
+
1
)
−
e
−
x
+
1
⇒
f
′
(
x
)
=
x
2
+
1
2
x
+
e
−
x
>
0∀
x
∈
R
⇒
f
is strictly increasing
g
(
x
)
=
e
x
1
−
2
e
2
x
=
e
−
x
−
2
e
x
⇒
g
′
(
x
)
=
−
(
2
e
x
+
e
−
x
)
<
0∀
x
∈
R
⇒
g
is decreasing
Now
f
(
g
(
3
(
α
−
1
)
2
)
)
>
f
(
g
(
α
−
3
5
)
)
⇒
g
(
3
(
α
−
1
)
2
)
>
g
(
α
−
3
5
)
⇒
3
(
α
−
1
)
2
<
α
−
3
5
⇒
α
2
−
5
α
+
6
<
0
⇒
(
α
−
2
)
(
α
−
3
)
<
0
⇒
α
∈
(
2
,
3
)