Q. Let $f : R \rightarrow R$ and $g : R \rightarrow R$ be two functions defined by $f ( x )=\log _{ e }\left( x ^{2}+1\right)- e ^{- x }+1$ and $g(x)=\frac{1-2 e^{2 x}}{e^{x}}$. Then, for which of the following range of $\alpha$, the inequality $f \left( g \left(\frac{(\alpha-1)^{2}}{3}\right)\right)> f \left( g \left(\alpha-\frac{5}{3}\right)\right)$ holds?
Solution: