Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow(0, (π/4)] be defined as f(x)= cot -1(x2+x+k), where k ∈ R. If f(x) is surjective function then 1+(1/ k )+(1/ k 2)+(1/ k 3)+ ldots ldots ldots ∞ terms is equal to
Q. Let
f
:
R
→
(
0
,
4
π
]
be defined as
f
(
x
)
=
cot
−
1
(
x
2
+
x
+
k
)
, where
k
∈
R
. If
f
(
x
)
is surjective function then
1
+
k
1
+
k
2
1
+
k
3
1
+
………
∞
terms is equal to
724
138
Inverse Trigonometric Functions
Report Error
A
2
B
3
C
4
D
5
Solution:
Θ
f
(
x
)
is surjective
∴
1
≤
x
2
+
x
+
k
<
∞
∴
4
a
−
D
=
1
⇒
4
−
(
1
−
4
k
)
=
1
⇒
k
=
4
5
∴
given sum
=
1
−
(
1/
k
)
1
=
1
−
(
4/5
)
1
=
5