Q. Let $f: R \rightarrow\left(0, \frac{\pi}{4}\right]$ be defined as $f(x)=\cot ^{-1}\left(x^2+x+k\right)$, where $k \in R$. If $f(x)$ is surjective function then $1+\frac{1}{ k }+\frac{1}{ k ^2}+\frac{1}{ k ^3}+\ldots \ldots \ldots \infty$ terms is equal to
Inverse Trigonometric Functions
Solution: