Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: R arrow(0, (2 π/3)] defined as f(x)= cot -1(x2-4 x+α). Find the smallest integral value of α such that f ( x ) is into function.
Q. Let
f
:
R
→
(
0
,
3
2
π
]
defined as
f
(
x
)
=
cot
−
1
(
x
2
−
4
x
+
α
)
. Find the smallest integral value of
α
such that
f
(
x
)
is into function.
226
149
Inverse Trigonometric Functions
Report Error
Answer:
0004
Solution:
Clearly
x
2
−
4
x
+
α
>
or
≥
3
−
1
∀
x
∈
R
⇒
x
2
−
4
x
+
α
+
3
1
>
0∀
x
∈
R
So, Discriment
<
0
⇒
16
−
4
(
α
+
3
1
)
<
0
4
−
α
−
3
1
<
0
⇒
α
>
4
−
3
1
∴
α
∈
(
4
−
3
1
,
∞
)
Hence minimum integral
α
=
4