Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: IR arrow IR be defined as f ( x )=|x|+|x2-1| . The total number of points at which f attains either a local maximum or a local minimum is
Q. Let
f
:
I
R
→
I
R
be defined as
f
(
x
)
=
∣
x
∣
+
∣
∣
x
2
−
1
∣
∣
.
The total number of points at which
f
attains either a local maximum or a local minimum is
2487
226
AIEEE
AIEEE 2012
Report Error
Answer:
5
Solution:
f
′
(
x
)
=
x
∣
x
∣
+
x
2
−
1
∣
x
2
−
1
∣
⋅
(
2
x
)
=<
b
r
/
><
b
r
/
>
⎩
⎨
⎧
<
b
r
/
><
b
r
/
>
2
x
−
1
,
<
b
r
/
><
b
r
/
>
−
(
2
x
+
1
)
,
<
b
r
/
><
b
r
/
>
1
−
2
x
,
<
b
r
/
><
b
r
/
>
2
x
+
1
x
<
−
1
−
1
<
x
<
0
0
<
x
<
1
x
>
1
<
b
r
/
><
b
r
/
>
So,
f
′
(
x
)
changes sign at points
x
=
−
1
,
−
2
1
,
0
,
2
1
,
1
so, total number of points of local maximum or minimum is
5.