Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f :(-∞, ∞) arrow((-π/2), (π/2)) be given by f ( x )=(π/2)-2 cot -1( e x ), then f is
Q. Let
f
:
(
−
∞
,
∞
)
→
(
2
−
π
,
2
π
)
be given by
f
(
x
)
=
2
π
−
2
cot
−
1
(
e
x
)
, then
f
is
118
127
Inverse Trigonometric Functions
Report Error
A
odd and is strictly decreasing in
(
0
,
−
∞
)
.
B
even and is strictly increasing in
(
−
∞
,
∞
)
.
C
odd and is strictly increasing in
(
−
∞
,
∞
)
.
D
neither odd nor even but is strictly increasing in
(
−
∞
,
∞
)
.
Solution:
f
(
−
x
)
=
2
π
−
2
cot
−
1
(
e
−
x
)
=
2
π
−
2
cot
−
1
(
e
x
1
)
=
2
π
−
2
tan
−
1
e
x
=
2
π
−
2
(
2
π
−
cot
−
1
e
x
)
=
2
cot
−
1
e
x
−
2
π
=
−
f
(
x
)
⇒
odd function,
f
′
(
x
)
=
1
+
e
2
x
2
e
x
>
0
⇒
strictly increasing