Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f :(-\infty, \infty) \rightarrow\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ be given by $f ( x )=\frac{\pi}{2}-2 \cot ^{-1}\left( e ^{ x }\right)$, then $f$ is

Inverse Trigonometric Functions

Solution:

$f (- x )=\frac{\pi}{2}-2 \cot ^{-1}\left( e ^{- x }\right)=\frac{\pi}{2}-2 \cot ^{-1}\left(\frac{1}{ e ^{ x }}\right)=\frac{\pi}{2}-2 \tan ^{-1} e ^{ x } $
$=\frac{\pi}{2}-2\left(\frac{\pi}{2}-\cot ^{-1} e ^{ x }\right)=2 \cot ^{-1} e ^{ x }-\frac{\pi}{2}=- f ( x )$
$\Rightarrow$ odd function, $f ^{\prime}( x )=\frac{2}{1+ e ^{2 x }} e ^{ x }>0 \Rightarrow$ strictly increasing