Q.
Let f be a non-negative function in [0,1] and twice differentiable in (0,1). If 0∫x1−(f′(t))2dt=0∫xf(t)dt,0≤x≤1 and f(0)=0, then x→0limx210∫xf(t)dt:
∫0x1−(f′(t))2dt=0∫xf(t)dt 0≤x≤1
differentiating both the sides 1−(f′(x))2=f(x) ⇒1−(f′(x))2=f2(x) 1−f2(x)f′(x)=1 sin−1f(x)=x+C ∵f(0)=0 ⇒C=0 ⇒f(x)=sinx
Now x→0limx20∫xsintdt(00)=21