Q. Let $f$ be a non-negative function in $[0,1]$ and twice differentiable in $(0,1) .$ If $\int\limits_{0}^{x} \sqrt{1-\left(f'(t)\right)^{2}} dt =\int\limits_{0}^{x} f ( t ) dt, 0 \leq x \leq 1$ and $f(0)=0$, then $\displaystyle\lim _{x \rightarrow 0} \frac{1}{x^{2}} \int\limits_{0}^{x} f(t) d t:$
Solution: