Q.
Let f be a monic polynomial function of degree n(n≥1) such that 0∫2πsin4xdx<0∫2π(sinx)ndx<1
If f(3)=f′′(3)=f(4)−4=0, then find the value of 21(3∫5f(x)dx).
0∫2πsin4xdx<0∫2π(sinx)ndx<1⇒n must be either 2 or 3 f(3)=f"(3)=0 and f(4)=4⇒n must be 3 . {Θ for n=2,f′′(x) is non-zero constant }
Now, f(x)=(x−3)(x2+bx+c) f′(x)=(x−3)(2x+b)+(x2+bx+c) f′′(x)=(x−3)⋅2+(2x+b)+(2x+b) f′′(3)=2(6+b)=0⇒b=−6 ∴f(x)=(x−3)(x2−6x+c)=(x−3)((x−3)2+c−9) f(4)=4⇒1+c−9=4⇒c=12 f(x)=(x−3)(x2−6x+12) =(x−3)((x−3)2+3) =(x−3)3+3(x−3) I=3∫5((x−3)3+3(x−3))dx
Putting x−3=t⇒dx=dt I=0∫2(t3+3t)dt=(4t4+23t2)02=416+23⋅4=10 ∴2I=5