Q. Let $f$ be a monic polynomial function of degree $n ( n \geq 1)$ such that $\int\limits_0^{\frac{\pi}{2}} \sin ^4 xdx < \int\limits_0^{\frac{\pi}{2}}(\sin x )^{ n } dx <1$ If $f(3)=f^{\prime \prime}(3)=f(4)-4=0$, then find the value of $\frac{1}{2}\left(\int\limits_3^5 f(x) d x\right)$.
Application of Derivatives
Solution: