Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a continuous and differentiable function in (x1 , x2). If f(x).f'(x)≥ x√1 - (f (x))4 and undersetx arrow x1+lim(f (x))2=1 and undersetx arrow x2-lim(f (x))2=(1/2) then minimum value of x12-x22 is λ then (π /λ ) equals to
Q. Let
f
be a continuous and differentiable function in
(
x
1
,
x
2
)
.
If
f
(
x
)
.
f
′
(
x
)
≥
x
1
−
(
f
(
x
)
)
4
and
x
→
x
1
+
l
im
(
f
(
x
)
)
2
=
1
and
x
→
x
2
−
l
im
(
f
(
x
)
)
2
=
2
1
then minimum value of
x
1
2
−
x
2
2
is
λ
then
λ
π
equals to
471
157
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
3
Solution:
1
−
(
f
2
(
x
)
)
2
2
f
(
x
)
f
′
(
x
)
≥
2
x
⇒
∫
x
1
x
2
1
−
(
f
2
(
x
)
)
2
2
f
(
x
)
f
′
(
x
)
d
x
≥
∫
x
1
x
2
2
x
d
x
(
⇒
(
x
2
2
−
x
1
2
)
≤
(
s
in
)
−
1
(
f
2
(
x
)
∣
∣
)
x
1
x
2
⇒
x
1
2
−
x
2
2
≥
3
π