Q. Let $f$ be a continuous and differentiable function in $\left(x_{1} , x_{2}\right).$ If $f\left(x\right).f^{'}\left(x\right)\geq x\sqrt{1 - \left(f \left(x\right)\right)^{4}}$ and $\underset{x \rightarrow x_{1}^{+}}{lim}\left(f \left(x\right)\right)^{2}=1$ and $\underset{x \rightarrow x_{2}^{-}}{lim}\left(f \left(x\right)\right)^{2}=\frac{1}{2}$ then minimum value of $x_{1}^{2}-x_{2}^{2}$ is $\lambda $ then $\frac{\pi }{\lambda }$ equals to
NTA AbhyasNTA Abhyas 2022
Solution: