Q.
Let f:[2,7]→[0,∞) be a continuous and differentiable function. Then, (f(7)−f(2))3(f(7))2+(f(2))2+f(2)f(7) is, where c∈[2,7].
1506
176
Continuity and Differentiability
Report Error
Solution:
Let g(x)=f3(x) ⇒g′(x)=3f2(x)⋅f′(x) ∵f:[2,7]→[0,∞) ⇒g:[2,7]→[0,∞)
Using Lagrange's mean value theorem on g(x), we get g′(c)=5g(7)−g(2),c∈[2,7] ⇒5f2(c)f′(c)=(f(7)−f(2))3(f(7))2+(f(2))2+f(2)f(7)