Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f:[2,7] \rightarrow[0, \infty)$ be a continuous and differentiable function. Then, $(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}$ is, where $c \in[2,7] .$

Continuity and Differentiability

Solution:

Let $g(x)=f^{3}(x) $
$\Rightarrow g'(x)=3 f^{2}(x) \cdot f'(x)$
$\because f:[2,7] \rightarrow[0, \infty)$
$ \Rightarrow g:[2,7] \rightarrow[0, \infty)$
Using Lagrange's mean value theorem on $g(x)$, we get
$g'(c)=\frac{g(7)-g(2)}{5}, c \in[2,7]$
$\Rightarrow 5 f^{2}(c) f'(c)=(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}$