Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f: (1, 3) arrow R be a function defined by f (x)=(x[x]/1+x2), where [x] denotes the greatest integer le x. Then the range of f is :
Q. Let
f
:
(
1
,
3
)
→
R
be a function defined by
f
(
x
)
=
1
+
x
2
x
[
x
]
,
where
[
x
]
denotes the greatest integer
≤
x
.
Then the range of
f
is :
3542
216
JEE Main
JEE Main 2020
Relations and Functions
Report Error
A
(
5
2
,
5
3
)
∪
(
4
3
,
5
4
)
25%
B
(
5
2
,
5
4
)
14%
C
(
5
3
,
5
4
)
14%
D
(
5
2
,
2
1
)
∪
(
5
3
,
5
4
)
47%
Solution:
f
(
x
)
=
⎩
⎨
⎧
x
2
+
1
x
;
x
2
+
1
2
x
;
x
∈
(
1
,
2
)
x
∈
(
2
,
3
)
f
(
x
)
is decreasing function
∴
f
(
x
)
∈
(
5
2
,
2
1
)
∪
(
5
3
,
5
4
)