Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f : \left(1, 3\right) \rightarrow R$ be a function defined by $f \left(x\right)=\frac{x\left[x\right]}{1+x^{2}},$ where $[x]$ denotes the greatest integer $\le x.$ Then the range of $f$ is :

JEE MainJEE Main 2020Relations and Functions

Solution:

$f(x) = \begin{cases} \frac{x}{x^{2}+1}\quad; & \text{$x \in\left(1, 2\right)$} \\[2ex] \frac{2x}{x^{2}+1}\quad; & \text{$x \in\left(2, 3\right)$} \end{cases}$
$f(x)$ is decreasing function
$\therefore f\left(x\right) \in\left(\frac{2}{5}, \frac{1}{2}\right) \cup \left(\frac{3}{5}, \frac{4}{5}\right)$