Q.
Let f:[−1,2]→[0,∞] be a continuous function such that f(x)=f(1−x)forallx∈[−1,2]. If R1=−1∫2xf(x)dx and R2 are the area of the region bounded by y=f(x),x=−1,x=2 and the x−axis. Then,
4693
197
IIT JEEIIT JEE 2011Application of Integrals
Report Error
Solution:
R1=−1∫2xf(x)dx.......(i)
Using a∫bf(x)dx=a∫bf(a+b−x)dx R1=−1∫2(1−x)f(1−x)dx ∴R1=−1∫2(1−x)f(x)dx [f(x)=f(1−x),given]
Given, R2 is area bounded by f(x), x = - 1 and x = 2. ∴R1=−1∫2f(x)dx...(iii)
On adding Eqs. (i) and (ii), we get 2R1=−1∫2f(x)dx....(iv)
From Eqs. (iii) and (iv), we get 2R1=R2