Q.
Let $f : [-1,2]$ $ \rightarrow [0, \infty] $ be a continuous function such that
$f(x) = f ( 1 - x)\, for \,all\, x \in [-1,2].$ If $ R_1 = \int \limits_{-1}^2 x f(x) dx $ and $ R_2 $ are the area of the region bounded by $y = f(x), x = - 1 , x = 2$ and the $x-axis$. Then,
IIT JEEIIT JEE 2011Application of Integrals
Solution: