Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let E= log 2( log 2 3)+ log 2( log 3 4)+ log 2( log 4 5)+ log 2( log 5 6)+ log 2( log 6 7)+ log 2( log 7 8), then 8E is equal to
Q. Let
E
=
lo
g
2
(
lo
g
2
3
)
+
lo
g
2
(
lo
g
3
4
)
+
lo
g
2
(
lo
g
4
5
)
+
lo
g
2
(
lo
g
5
6
)
+
lo
g
2
(
lo
g
6
7
)
+
lo
g
2
(
lo
g
7
8
)
, then
8
E
is equal to
31
116
Continuity and Differentiability
Report Error
A
4
B
8
C
27
D
36
Solution:
E
=
lo
g
2
(
lo
g
2
3
)
+
lo
g
2
(
lo
g
3
4
)
+
lo
g
2
(
lo
g
4
5
)
+
lo
g
2
(
lo
g
5
6
)
[11th, 03-07-2011, J]
<
b
r
/
>
+
lo
g
2
(
lo
g
6
7
)
+
lo
g
2
(
lo
g
7
8
)
=
lo
g
2
(
lo
g
2
8
)
=
lo
g
2
3
Hence,
8
E
=
8
l
o
g
2
3
=
2
l
o
g
2
(
3
)
3
=
(
3
)
3
=
27