Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $E=\log _2\left(\log _2 3\right)+\log _2\left(\log _3 4\right)+\log _2\left(\log _4 5\right)+\log _2\left(\log _5 6\right)+\log _2\left(\log _6 7\right)+\log _2\left(\log _7 8\right)$, then $8^E$ is equal to

Continuity and Differentiability

Solution:

$E =\log _2\left(\log _2 3\right)+ \log _2\left(\log _3 4\right)+\log _2\left(\log _4 5\right)+\log _2\left(\log _5 6\right) \text { [11th, 03-07-2011, J] }
+\log _2\left(\log _6 7\right)+\log _2\left(\log _7 8\right)=\log _2\left(\log _2 8\right)=\log _2 3 $
$\text { Hence, } 8^E=8^{\log _2 3}=2^{\log _2(3)^3}=(3)^3=27$