Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let displaystyle∑n=0∞ (n3((2 n) !)+(2 n-1)(n !)/(n !)((2 n) !))=a e+(b/e)+c, where a, b, c ∈ Z and e= displaystyle∑n=0∞ (1/n !) Then a2-b+c is equal to
Q. Let
n
=
0
∑
∞
(
n
!)
((
2
n
)!)
n
3
((
2
n
)!)
+
(
2
n
−
1
)
(
n
!)
=
a
e
+
e
b
+
c
, where
a
,
b
,
c
∈
Z
and
e
=
n
=
0
∑
∞
n
!
1
Then
a
2
−
b
+
c
is equal to ___
149
134
JEE Main
JEE Main 2023
Sequences and Series
Report Error
Answer:
26
Solution:
n
=
0
∑
∞
(
n
!)
((
2
n
)!)
n
3
((
2
n
)!)
+
(
2
n
−
1
)
(
n
!)
=
n
=
0
∑
∞
(
n
−
3
)!
1
+
n
=
0
∑
∞
(
n
−
2
)!
3
+
n
=
0
∑
∞
(
n
−
1
)!
1
+
n
=
0
∑
∞
(
2
n
−
1
)!
1
−
n
=
0
∑
∞
(
2
n
)!
1
=
e
+
3
e
+
e
+
2
1
(
e
−
e
1
)
−
2
1
(
e
+
e
1
)
=
5
e
−
e
1
∴
a
2
−
b
+
c
=
26