Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\displaystyle\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\displaystyle\sum_{n=0}^{\infty} \frac{1}{n !}$ Then $a^2-b+c$ is equal to ___

JEE MainJEE Main 2023Sequences and Series

Solution:

$ \displaystyle\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)} $
$=\displaystyle\sum_{n=0}^{\infty} \frac{1}{(n-3) !}+\displaystyle\sum_{n=0}^{\infty} \frac{3}{(n-2) !} +\sum_{n=0}^{\infty} \frac{1}{(n-1) !}+\displaystyle\sum_{n=0}^{\infty} \frac{1}{(2 n-1) !}-\displaystyle\sum_{n=0}^{\infty} \frac{1}{(2 n) !} $
$ =e+3 e+e+\frac{1}{2}\left(e-\frac{1}{e}\right)-\frac{1}{2}\left(e+\frac{1}{e}\right)$
$ =5 e-\frac{1}{e} $
$ \therefore a^2-b+c=26$