Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let displaystyle ∫ (1 - ln x/x2)dx=f(x), for all positive x . If f(e)=(1/e), then f(2)+f(4) is equal to
Q. Let
∫
x
2
1
−
l
n
x
d
x
=
f
(
x
)
,
for all positive
x
. If
f
(
e
)
=
e
1
,
then
f
(
2
)
+
f
(
4
)
is equal to
2279
189
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
l
n
4
B
l
n
2
C
1
D
0
Solution:
f
(
x
)
=
∫
x
2
1
d
x
−
∫
l
n
x
⋅
x
2
1
d
x
=
−
x
1
−
{
l
n
x
(
−
x
1
)
+
∫
x
2
1
d
x
}
=
−
x
1
+
x
l
n
x
+
x
1
+
c
=
x
l
n
x
+
c
Now,
f
(
e
)
=
e
1
⇒
c
=
0
Hence,
f
(
2
)
+
f
(
4
)
=
2
l
n
2
+
4
l
n
4
=
l
n
2