Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\displaystyle \int \frac{1 - ln x}{x^{2}}dx=f\left(x\right),$ for all positive $x$ . If $f\left(e\right)=\frac{1}{e},$ then $f\left(2\right)+f\left(4\right)$ is equal to

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

$f\left(x\right)=\displaystyle \int \frac{1}{x^{2}}dx-\displaystyle \int ln x\cdot \frac{1}{x^{2}}dx$
$=-\frac{1}{x}-\left\{ln x \left(- \frac{1}{x}\right) + \displaystyle \int \frac{1}{x^{2}} d x\right\}$
$=-\frac{1}{x}+\frac{ln x}{x}+\frac{1}{x}+c=\frac{ln ⁡ x}{x}+c$
Now, $f\left(e\right)=\frac{1}{e}\Rightarrow c=0$
Hence, $f\left(2\right)+f\left(4\right)=\frac{ln 2}{2}+\frac{ln ⁡ 4}{4}=ln2$